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A numerical method is presented which allows the accurate and 
efficient solution of systems of linear equations of the form 
dz, (x)/dx= Cl”=, A,,(x) z,(x), i= 1, 2, . . . . N, when the solutions vary 
rapidly compared with the A,,(x). The method consists of numerically 
developing a set of basis solutions characterized by new dependent 
variables which are slowly varying. These solutions can be accurately 
computed with an overhead that is substantially independent of the 
smallness of the scale length characterizing the solutions. Examples are 
given. 0 1992 Academtc Press, Inc. 

1. INTRODUCTION 

Many problems in physics and astronomy involve the 
solution of sets of linear ordinary differential equations 
dz,(x)/dx=~,N_, AO(x) z,(x), i= 1,2, . . . . N, the solutions 
z,(x) of which exhibit variation on a local scalelength much 
less than that characterizing the coefficients A,(x). Exam- 
ples are to be found in the propagation of electromagnetic 
waves, in the theory of microwave devices such as free elec- 
tron lasers [l], in control theory [24], in terrestrial 
seismology [ 5 ], and in the theory of stellar pulsations [6]. 
Often the coefficients A,(x) are not given analytically, but 
numerically. 

The most often used approximate method, the WKB 
technique [7] is simple only for the case N < 2 and when 
the coefficients are analytic (we will not discuss general 
perturbation methods for which the reader is referred to 
Kevorkian [8] and references therein). For systems of 
higher order, the usual method of solution is direct numeri- 
cal integration of the problem using a standard package 
(e.g., an adaptive Runge-Kutta technique [9]). This 
approach has a number of drawbacks. If high accuracy is 
required then - 50 points per local characteristic length of 
the solution must be taken to achieve -4-figure accuracy 
and the computational overhead goes up roughly linearly 
with the number of oscillations. Moreover, to generate 

: Now at IGPP/LLNL, L-413, P.O. Box 808, Livermore, CA 94550. 

many solutions as may be necessary if the problem involves 
an eigenvalue and if many of these and the associated eigen- 
functions are required, and these results are to be used to 
compute normalization and other integrals, the task of 
storing the results or computing the required functions 
(while integrating) is usually prohibitive. In this paper we 
present a method which does not suffer from many of the 
aforementioned disadvantages. It involves a computational 
overhead which is substantially independent of the local 
wavelength and presents the solution in terms of quantities 
which vary on the intrinsic scalelength of the coefficient 
matrix A,(x) and hence can be much more easily stored for 
other purposes. 

The technique [20] is motivated by the WKB method, 
but can be used to numerically compute solutions to any 
desired degree of accuracy. The process involves the numeri- 
cal development of a linearly independent set of solutions of 
the governing system of differential equations which span 
the solution space. They have the form of asymptotic 
solutions appropriate to the short local scale length limit 
plus remainder. Schematically one generates, numerically, 
N solutions of the form z,(x) = b,(x) exp j k,(x) dx, 
s = 1, 2, . ..) N, where the k,(x) are the eigenvalues of the 
matrix A,(x). It is assumed that some or all of the k,(x) are 
large and well separated but slowly varying, and they 
account for the dominant rapid variation in z,(x). The 
amplitudes b,(x) which we calculate are of order unity and 
slowly varying, apart from a fluctuating part which is 
asymptotically small as the number of oscillations or 
e-folding rate grows. Usually this remainder can be either 
neglected or calculated with low precision. 

In some problems the rapidly varying solutions may 
change character from rapidly growing to rapidly oscillat- 
ing. The thin regions in x which separate the larger sub- 
domains where a given asymptotic behavior prevails are 
most conveniently dealt with by reversion to solution of the 
original equations. This feature, the counterpart of dealing 
with a boundary layer in an asymptotic analysis, does not 
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materially diminish the efficiency of the method. A proce- 
dure for estimating the effective width of this boundary 
layer, which has worked well in all the test cases to be 
described, is given in the Appendix. 

The theory of the method is given in Section 2. It is first 
motivated by considering the case where the A,(x) are 
constant. This suggests the form of the solution for the case 
of the A,(x) slowly varying on the scalelength of the solu- 
tion and indicates a plausible analytic perturbation theory, 
a generalization of the WKB method which formally can be 
carried to arbitrary order. Then a numerically convenient 
scheme based on the analysis is presented. 

In Section 3 the method is applied to a second-order 
differential equation (N= 2) for which an exact solution in 
terms of Bessel functions is available. It was chosen in order 
to develop and prove the numerical implementation, to 
determine the accuracy at each stage of the calculation, and 
to test the sensitivity of the method to various parameters. 
The method is shown to work very well indeed. It easily 
copes with both oscillating and exponentially growing 
solutions. One verifies that the computational overhead is 
independent of the number of nodes in the solution, this 
being accomplished with the same fixed number of grid 
points for all cases. 

In Section 4 the method is applied to the problem of 
calculating eigenfrequencies and eigenmodes for the non- 
radial oscillations in stars. This eigenvalue problem is 
described by a fourth-order system of ordinary differential 
equations. The spectrum of eigenvalues has effectively two 
branches, one infinite set which goes to infinity, and another 
infinite set which condenses on zero. The system can be 
approximately reduced to a second-order system for very 
large or very small eigenvalues. The results of the method 
presented here were compared with those obtained by a 
shooting technique employing a Runge-Kutta integrator. 
Both methods produced accurate results, but the time for 
the new method was substantially constant, while that for 
the other increased with the number of oscillations in the 
solution. This example also demonstrated that the new 
method could be used to determine those solutions regular 
at the singular point at the origin, without recourse to a 
series solution. The special features of the new method will 
permit the rapid economical investigation of the effect of 
changing boundary conditions on the modes, will allow the 
easy determination of the asymptotic spacing of eigenvalues 
and the ready computation of normalization and other 
integrals such as enter non-linear theories of weak stellar 
turbulence. Finally, Section 5 summarizes the work. 

Appendix A shows how to reduce and solve the boundary 
layer problem that enters in the thin region straddling the 
point where two eigenvalues k,(x) coalesce and which 
separates the rapidly growing and rapidly oscillating sub- 
domains. The result is an approximate local solution in 
terms of Airy functions which allows an approximate 

asymptotic matching of regions. For the purpose of this 
work the important result is an expression for the effective 
width of the thin region in terms of easily computed proper- 
ties of the matrix A,(x). 

2. THEORY FOR A SYSTEM OF ORDINARY 
DIFFERENTIAL EQUATIONS 

2.1. Theory 

In this section we will develop the transformation of a 
general system of linear ordinary differential equations 
which leads to the basis set of solutions employed for 
the numerical work. The procedure is suggested by what 
happens when the coefficients in the system are constant. In 
general, regions where the aforementioned procedure is 
valid are separated by domains, often thin boundary layers, 
in which it fails. The joining of such regions is treated last in 
the section. 

Consider the following system of linear, ordinary differen- 
tial equations 

4x) 
- = A(x) z(x), dx 

where z(x) denotes the column vector with elements z,(x), 
z,(x), z,(x), . . . . zN- 1(x), zN(x) and the square matrix 
A(x) = [Aii(x)], i,j= 1,2, . . . . N. Define eigenvectors e,(x) 
and eigenvalues kj(x) of A(x) via Ae, = kje,. Then the k, are 
the roots of the characteristic equation det IA - kll = 0. 
Suppose that the eigenvalues k,(x) are all distinct in the 
interval in x of interest. Then the associated eigenvectors are 
linearly independent [lo]. Let E(x) be a matrix whose 
columns are the eigenvectors ej(x). It follows that det E # 0 
and the inverse E ~ ’ = adj E/det E exists. It is readily seen 
that E-‘AE = K = [kjS,]. 

The desired set of basis solutions is constructed as 
follows. Introduce a column vector b,(x) and a charac- 
teristic exponent SC, k,(x’) dx’, using 

z,=Eb,exp[jlk,(x’)dx’], 

where x0 is a reference (normalization) point chosen for 
convenience and s represents the index labeling one of the 
linearly independent solutions of (1). The governing equa- 
tion (1) becomes 

I 
. (3) 
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Now introduce M = E-’ dE/dx. Upon carrying out the 
differentiation, cancelling the exponential term, and multi- 
plying by E-i there results, in component form, 

dbs, 
x + Q,,b,, = - 5 Q,b,s, 

j#s 

(k,-ki)b,+S2,b,= -2 

i,j= 1 , . . . . N. The terms which are asymptotically dominant 
in the ratio of local wavelength to scalelength of A have 
been put on the left-hand side. 

The advantages of this new scheme are: (i) the eigen- 
functions b, are smoothly varying functions similar to a 
normalized envelope of the oscillatory solution and conse- 
quently (mostly) independent of node number, and (ii) each 
stage of the scheme has known sources of error which can be 
controlled without increased computational overhead. 

Define the rough smallness parameter E,, 

Es(X) = 
max lsZ,I 

min Ik, - ki 1 41 for ifs. (6) 

Recall that in the limit, where A is constant, dE/dx = 0 and, 
hence, fi = 0 and Eq. (4) reduces to db,,/dx = 0. Then (5) is 
consistent with b,= 6,. When E, is small this suggests 
that we treat b,,y - Lo(l), db,/dx - cO(.s,), Q, - U(E,), and 
b, - O(E,) for i # S. Correspondingly, to lowest order in E,, 
(4) can be approximated by 

If we define rciS(x) = k, - ki, then (5) can be approximated 
by 

An approximation correct to next order in E, for b,, may be 
obtained using (8) in (4) to give 

db,- Q .a. 
dx - 

--Q,,f~- b 
ifs Kis(X) 1 “’ 

Correspondingly, the approximation for b, for i # s can be 
improved by using (7) and (8) in (5) to obtain, for i # s, 

(10) 

Note that on the right-hand side of (10) the first term in 
brackets is of order E,, while the other terms are of order E:. 
Equation (10) can be used in (4) to obtain an improved 
asymptotically approximate equation for b,,, etc. 

In practice when N> 2 and/or when A(x) is not known 
analytically, numerical solution of the problem is required. 
When the kj are dominantly real and large it is best to 
employ (9) and (10) or their higher order counterparts to 
approximate the solution, since direct solution of (4) and 
(5) is an unstable process in virtue of the attendant stiffness 
of the system. The relative error can be gauged by examina- 
tion of the ratio of the term of highest order in E,~ on the 
right-hand side of the counterpart of (10) to its immediate 
predecessor. The successive higher order derivatives which 
occur are required with successively lower accuracy, which 
relieves the burden of numerical differentiation. 

When the k, are large and predominantly imaginary, (4) 
and (5) can be successfully treated by direct integration. It 
is only neccessary to use initial conditions which are 
asymptotically correct. The point x0 is chosen in the interval 
under consideration such that E, is a minimum and then we 
choose b,(x,) = 1. The other b,,(x,) are determined recur- 
sively by solving 

= _ db%o) 
dx, ( 11) 

for b!“+l)(x,,) for j#s. The values for b!“(x,) may be 
obtaiged by approximating the right-hand ‘iide of (11) by 
zero. Using these initial data one then integrates (5) one 
small step in x from x0 so as to determine the derivative 
term for use in (1 l), which then determines b(i,2’(x,) etc. This 
process is continued until the desired asymptotic accuracy 
in b,,(xo) is achieved for s = 1,2, . . . . N. Using these values as 
initial data (4) and (5) can be integrated stably using an 
implicit method which will serve to filter out any small 
amplitude rapidly varying corrections outside the desired 
accuracy. 

When dealing with the unapproximated set (4) it is con- 
venient in any domain where det IEJ # 0 to normalize the 
eigenvectors to unity in a differentiable way, ey .e,= 6,, 
where the superscript H denotes the Hermitian conjugate. 
Constructing the b, by this process yields a linearly inde- 
pendent, completely determined set z,, s = 1, 2, 3, . . . . N, of 
solutions of the original equation (1). These form a basis 



272 BERNSTEIN, BROOKSHAW, AND FOX 

such that any solution can be written as a linear combina- 
tion thereof, namely, 

N 

z= 1 cc,z, 
s=l 

=E c crSb,exp .I, [j: k,(x’) dx’], (12) 

where the ct, are constants to be determined to satisfy initial 
and/or boundary conditions at a point x,. Note that it 
follows from (1) and (12) that 

E(x,)-’ z(x,) = ; ~,Ux,)> (13) 
r=l 

which is a system of N algebraic equations for the CI,. If we 
define the non-singular matrix B = [b,] and the vector 
a = [ICY,] then Eq. (13) can be written, suppressing the argu- 
mentx,,asEP’z=Baandsoa=B-‘E-‘z. 

2.2. Numerical Treatment 

This particular scheme combines a variety of numerical 
techniques and ways of implementing them. An important 
consideration when testing this scheme will be its ability to 
maintain high accuracy with low computational overhead. 
In addition, major sources of error should be identifiable 
and correctable. A detailed description of each numerical 
component of our implementation of this method is beyond 
the scope of this paper and the reader is referred to 
Bernstein, Brookshaw, and Fox [ 111 for more details. 

In general the parameters E,(X) will not be uniformly 
small over the interval in x of interest. When E,(X) is 
uniformly not small and there is no coalescence of roots k,, 
the transformed equations may still be used, but often 
provide little advantage over the original system. More 
important is the situation where E,(X) is small except in the 
neighborhood of a limited number of points where two or 
more of the kj coalesce, or of singular points of (1). The 
most likely coalescence is binary, which is the only one we 
shall consider in detail here. In the examples in this paper 
this coalescence always takes place on the real axis. In the 
neighborhood of a binary coalescence the eigenvalues are 
either real or complex conjugate pairs. Instances of higher 
order coalescences are readily dealt with by an evident but 
tedious extension of the technique to be described. 

Domains in x in which E,(X) is suitably small we term 
regular (or R) regions. Domains in x where this is not so, 
commonly thin “boundary layers,” we term transition (or T) 
regions. In R-regions it is efficient, accurate, and economicai 
to solve the transformed equations as outlined above. In 
T-regions it is advantageous to solve the original system of 
Eq. (1). These solutions must be joined at the boundaries 

k, 

c1a2 x?,L, , ; 

‘0.0 0.2 0.4 x 0.6 0.8 1.0 

FIG. 1. Quantities related to the solution of the example in Section 3, 
with Y = 2, p = IO,4 = 10, and 20 nodes in the solution using the method of 
this paper: (a) a schematic of how the domain is divided into regular and 
transition regions; (b) the regular solution reconstructed from the trans- 
formed variables; (c) eigenvalue associated with the regular solution; in the 
first regular region there is only one component; in the second regular 
region the solid line is the real component and the dashed line is the 
positive imaginary component of the pair; (d) shows the real components 
of R, the solid line is 52,, and the dashed line is 52,,; (e) imaginary com- 
ponents of a, the solid line is Sz,, and the dashed line is .C2,* (overlayed); 
(f) the small parameter E,; note the rapid variation near the transition 
region. 

between the two types of regions, which is conveniently 
done using (12), (13), et seq. 

In a given problem it is useful to first numerically generate 
the k,(x) over the domain and examine the results for exact 
or near coalescence. The E,(X) could also be computed in 
order to establish if they are adequately small to warrant the 
use of the transformed equations. In practice, for computa- 
tional speed, this is done after the domain has been sub- 
divided. Figure la shows an example of how the domain 
was subdivided for the modified Bessel equation discussed 
in Section 3 below. 

When there is a binary coalescence on the real axis, the 
theory of Appendix A applies and can be used to estimate 
the thickness of the T-region straddling the point of 
coalescence x,. Namely, initially we choose the boundaries 
(x; and xc? ) of the T-region to be (see Appendix A) 

x, =xc-<-g’(x,)-1’3, (14) 

x + = x, + 5 ‘g’(x,) c 1’3, (15) 
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where the discriminant g(x) whose derivative appears in 
Eq. (14) and (15) is given by (A24). The point x, can be 
accurately determined by finding the zero of the above dis- 
criminant expression which only involves the evaluation of 
simple properties of the coefficient matrix. The coefficients 
5 - and 5 + are typically of order 2.5 (see Appendix A) and 
are chosen on the basis of experiment to achieve the desired 
accuracy with minimum computational effort. 

In the neighborhood of a singular point of (1) often the 
divergent solutions are characterized dominantly by 
exp l k,(x), in which event it is not necessary to develop a 
series solution about that point to start the solution; simply 
define z, = Eb, exp s;, dx k,(x) and start at any convenient 
point away from the singularity. 

In the example r’ corresponds to the side where the k, 
are real. Then, 4 + and 5 - are varied to as to achieve the 
desired accuracy. This can be done in such a way as to be 
common to all parameter variations of a given problem. 
Experience thus far has shown a remarkable insensitivity to 
the choice of 5 -. However, one must choose 5 + so as to 
include at least one node of the oscillation; otherwise 
unacceptable errors may appear in the solutions. 

The sensitivity of the results on the choice of the width of 
the T-region could be further reduced by incorporating an 
adaptive grid in the R-regions. The grid separation would 
decrease as the calculation approached the T-region. An 
adaptive grid could be constructed for specific cases to 
accommodate the change in the dependent variables as the 
solution approaches x, and thus reduce the sensitivity (and 
accuracy dependence) of the results to the width of the 
T-region. 

Another adjustable parameter in the scheme is the 
number of iterations to use in the initialization scheme for 
the eigenfunctions B. From inspection of the formal integra- 
tion by parts the remainder for complex eigenvalues will 
oscillate about a mean. The use of an implicit integration 
scheme ensures stability and damps the oscillations that are 
a part of the solution due to the approximate initialization. 
Therefore, the number of terms used in the initialization 
of the transformed equations must be chosen so that the 
amplitude of the oscillating part of the solution does not 
contribute to the solution, to the required accuracy. 

The approximation used to initialize the eigenfunctions 
B, is based on the small parameter a,. The nai’ve method 
would be to incorporate as many terms as required so that 
the last term is smaller than some specified accuracy 
requirement for the solution. This method ignores a number 
of points: first, each term in the series is calculated from a 
previous term using a numerical differentiation scheme 
which has a truncation error and, second, the final solution 
is a linear combination of functions and the effect of the 
error in the initialization is unknown. There is also a third 
point that should be noted: as the number of nodes in an 
R-region increases, the small parameter E,~ decreases; that is 

fewer terms are required in the initialization series for equiv- 
alent accuracy. 

From the two examples presented in this paper the mini- 
mum number of terms required in the initialization series 
was two; that is, we require only terms to second order in 
the small parameter E,. This ensured five-figure accuracy in 
the solution for all examples described. The incorporation 
of more terms did not alter the solution, as the error was 
dominated by the truncation error in the differentiation and 
integration schemes 

3. EXAMPLE 1 (MODIFIED BESSEL EQUATION) 

3.1. Description 

A simple test of the method described above is provided 
by a linear second order ordinary differential equation 
whose coefficient matrix is 

0 1 
A(x) = 

- (i*q2x*q + p2 - v2q2) - (1 - 2p) 

X2 X I 

’ (16) 

where v, 2, p, and q are positive constants and 0 d x 6 1. The 
variables are z = (z,, z2) with z2 = dz,/dx. The general 
solution of this equation is 

z,(x) = xp(aJ,(ixq) + flY,(lxq)), (17) 

where a and /? are arbitrary constants. Near the origin, 

Zl(X) - xp [&(ff)‘ 

B ;1xq --y -- - ()I r(l-v) 2 (18) 

and for regularity at the origin we must choose B = 0. The 
quantities J,, Y,, and r are Bessel functions of the first and 
second kind and the gamma function, respectively. For 
Ix4 4 v the asymptotic form of the solution is 

z1(x)~a&xpPq’2cos 
( 

Axq--~-~ . 
> 

(19) 

The eigenvalues k,,, of the coefficient matrix are 

k 
1-2p 

I,*= -- 2x 

*; 1 + 4v*q* - 4p - 4A2q2xZ? (20) 
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Note that there is one point where the eigenvalues coalesce, 
namely, 

x, = 
1 + 4,,*$ - +, 1/@7) 

41*q2 > 
(21) 

The eigenvectors e, and e2 are arbitrary to within a multi- 
plier which can be chosen for convenience. 

Consider the case p = 10, q = 10, and v = 2 with 20 nodes 
in the solution (this latter will fix A). Figure 1 displays a 
comparison of the solution z, , the eigenvalue k, , the real 
and imaginary parts of Q and the small parameters &i and 
s2 over the domain. As expected, these figures indicate there 
is one coalescence point and, in the vicinity of this point, 
n(x) is no longer slowly varying and E, becomes larger. In 
this example and the example of the next section the method 
of solution in the vicinity of x = 0 needs special considera- 
tion. Also note that near x = 0, Q starts to diverge as if there 
was an eigenvalue coalescence point at the origin. This is 
due to the singular nature of the coefficient matrix near the 
origin. The parameter E, in Fig. lf, though, remains 
uniformly small near the origin implying that the trans- 
formed equations are valid in this region (cf. Section 4). 

To lind the regular solution of z in the numerical 
implementation, we need to exclude the irregular compo- 
nent (see (17)). This is easily achieved by using the solution 
constructed from the correct eigenvalue. From Section 2 we 
know that the final solution of an R-region is constructed 
from the linear combination of solutions generated from 
each eigenvalue. To ensure we follow the correct solution in 
the first R-region we follow only the solution constructed 
from the positive eigenvalue. That is the eigenvalue that 

[x10-* ] 

7.5 r 

5.0 

2.5 

Error 

-2.5 

-7.5 ' I I I I 
0.0 0.2 0.4 x 0.6 0.8 1.0 

FIG. 2. The relative error in I,, the solution of (1) using (16) with 
Y = 2, p = 10, q = 10, <’ = 4, t;- = 1, 320 nodes in the solution, 160 grid 
points in the R-region, and 80 grid points in the T-region. 

produces a growing solution. This technique greatly sim- 
plifies the initialization of the method, though it does mean 
that if a unique solution z is required, it must be fixed by 
knowledge of the solution at a given point. 

3.2. Results 

Equation (16) was chosen as a first test of the method 
because each step of the transformation could be calculated 
analytically. This was helpful in removing errors from each 
section of the numerical code. In describing the results we 
will restrict ourselves to comparing the final solution to the 
analytic solution primarily for simplicity. As an example of 
this, Fig. 2 shows the error in zr, defined as the pointwise 
difference between the exact solution and the method solu- 
tion divided by the envelope of the analytic solution. Note 
that since our method uses very few points in the oscillating 
region the error can be underestimated due to selection 
effects (see Table III). 

The error in the linal solution z is the accumulated error 
from a number of sources, although the dominant contribu- 
tion to the error comes from the calculation of dE/dx and 
the integration of the B equations and, to a lesser extent, the 
characteristic exponent. Figure 1 clearly shows that if the 
T-region is too narrow the assumption that the transformed 
quantities vary slowly is no longer valid. The numerical 
truncation error in the vicinity of x, will increase due to the 
growth of higher order derivatives. This could be alleviated 
by an adaptive grid, but a computationally simpler method 
is to use an appropriate T-region width. 

The two parameters that line tune the width of the 
T-region are r ~ and 4 + of (14) and (15). Table I shows the 
effect on the error when r’ is reduced. This parameter 
governs the transition halfwidth on the oscillating side of x, 
for this example. Table II shows the effect on the error when 
tP is reduced. This parameter governs the transition half- 
width on the exponential side of x,. Both tables show that, 

TABLE I 

The Maximum Relative Error (as Defined in Section 3.2) for the 
Example in Section 3 as a Function of the Width of the T-region 

Maximum error 

Transition 

r+ (right edge-x:) z1 z2 

0.05 0.603 8.8 x 10 -s 8.3 x 10-l 
0.10 0.604 6.8 x 10m5 6.6 x 10-5 
0.50 0.613 1.5 x 10m6 1.4 x 1o-6 
1.00 0.624 7.2 x lo-’ 6.5 x lo-’ 

Nofe. t- = 4, p = 10, q = 10, 100 nodes in the solution, 80 grid points 
in the T-region, and 160 grid points in the R-region. The coalescence point 
of the eigenvalues is x, = 0.602. No nodes in the solution appear in the 
T-region over this range. 
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TABLE II TABLE IV 

The Maximum Relative Error for the Example in Section 3 as a The maximum Relative Error for the Example in Section 3 as a 
Function of the Width of the T-region Function of the Index v, with 10 Nodes in the Solution 

Maximum error 

Transition 

(left edge-x; ) 21 =2 

1.0 0.876 8.9 x 1O-4 6.3 x lO-4 
2.0 0.868 1.6 x 10m4 1.1 X 1om4 
3.0 0.860 4.1 x 1om5 3.1 x 1om5 
4.0 0.852 1.3 x 1om5 1.2 x 1om5 
5.0 0.844 2.6 x 10m6 4.9 x 1om6 

Note. 5’ = 2, p = 10, q = 10, 10 nodes in the solution, 80 grid points in 
the T-region, and 160 grid points in the R-region. The coalescence point of 
the eigenvalues is X, =0.884. No nodes in the solution appear in the 
T-region over this range. 

as expected, to achieve five-digit accuracy the optimum 
values for both parameters is -2.5. It should be stressed 
that for a particular problem both parameters need only be 
chosen once. The results of Appendix A furnish us a method 
for dynamically adjusting the width of the T-region as the 
index v and the number of nodes in the solution changes. In 
most problems this T-region is one which is not difficult to 
deal with using the original equations and so there is very 
little accuracy lost in converting between the transformed 
and original equations and back again. 

The method is expected to easily deal with both oscillating 
and exponentially growing solutions with no change in 
the input parameters. Table III shows the effect on the error 
in z1 as the number of nodes in the solution is increased, and 
Table IV shows the effect of increasing the index v on the 
solution. These results indicate that the error in the method 
is independent of the number of nodes in the solution. The 
decrease in the error as the number of nodes increases is due 

TABLE III 

The Maximum Relative Error for the Example in Section 3 as a 
Function of the Number of Nodes in the Solution 

Nodes 

Maximum error 

Index 

Maximum error 

v X< Zl =2 

2 0.750 1.4 x 1om6 1.4 x lo-6 
4 0.798 5.8 x lo-’ 5.8 x lo-’ 
8 0.843 6.4 x lo-’ 4.9 x 1o-5 

16 0.884 1.3 x 1o-5 1.3 x 1om5 

Note. i: + = 2,t = 4, p = 10, q = lo,80 grid points in the T-region, and 
160 grid points in the R-region. 

to a selection effect in the final solution, as we have less than 
one grid point per node (axis crossing). Equation ( 18) 
shows that increasing the index in this example differential 
equation increases the exponential behavior of the solution 
before it begins to oscillate. The error in the method shows 
no trends with changing index, though there is some varia- 
tion. 

To demonstrate that the majority of the error in the solu- 
tion is due to truncation associated with the numerical dif- 
ferentiation and integration, Table V shows the effect of 
reducing the grid stepsize in the R and T-regions. The first 
entry in the table is probably too small due to selection 
effects as so few points are used. The almost identical error 
for the last two entries in the table is due to the initialization 
of the B equations. In this section the initialization is only to 
second order in the parameter E,, therefore the residual 
small amplitude oscillations in the transformed equations 
are not being resolved and this error now dominates. Apart 
from these accountable variations the trend in the table is as 
expected, the decrease in the steplength is reducing the 
truncation errors of the differentiation and integration 
schemes. 

TABLE V 

The Maximum Relative Error for the Example in Section 3 as a 
Function of the Number of Grid Points in Each Region 

in solution X< 21 =2 Number of grid points Maximum error 

20 0.703 3.8 x 1O-6 3.7 x 10-h 
40 0.658 2.3 x 1O-6 1.1 x 10-G 
80 0.615 2.9 x 1O-6 2.9 x 1O-6 

160 0.574 3.4 x 10-7 3.1 X lo-’ 
320 0.536 9.1 x 1oms 9.1 x 1oms 
640 0.500 1.5 x 10-e 1.5 x 10-G 

Note. Y = 2, 5’ = 2, [- = 4, p = 10, q = 10, 80 grid points in the 
T-region, and 160 grid points in the R-region. 

Regular Transition ZI =2 

40 20 3.4 x 1o-5 3.2 x 10m5 
80 40 7.2 x 1O-5 7.1 x 1o-5 

160 80 8.6 x lo-’ 8.4 x lo-’ 
320 160 8.2 x lo-* 8.0 x lo-’ 
640 320 7.7 x lo-* 7.8 x IO-* 

Nofe. Y = 2, 5 + = 2, lo = 4, p = 10, q = 10 and 50 nodes in the solution. 

58 I/98/2-7 
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3.3. Summary 

The test results in this section indicate that with a fixed 
number of grid points the scheme outlined in Section 2 can 
be used to calculate solutions of the example equation, 
independent of the number of oscillations (nodal points) or 
the exponential growth of the solution. 

The results of this section also demonstrate that the 
accuracy of the solution does not critically depend on the 
choice of the two important parameters 5 ~ and 5 + which 
govern the width of the T-region. There is a critical width, 
which depends on the desired accuracy, after which no 
change is made in the solution. 

In this example we selected the regular solution by 
following the solution associated with the positive eigen- 
value in the first regular region near the origin. For this case, 
where the parameters E, are uniformly small in the first 
regular region, this selection has been shown to be valid. 

4. EXAMPLE 2 (NON-RADIAL 
OSCILLATIONS OF STARS) 

4.1. Introduction 

The equations governing non-radial oscillations of stars 
are those representing conservation of mass, momentum, 
and energy, together with an equation of state for the gas, 
an expression for the gravitational potential, equations for 
radiative transfer, and the magnetic field. For the purposes 
of this paper we shall assume the oscillations are adiabatic 
and neglect the effects of radiative transfer and magnetic 
fields. 

The method of solution involves separating the equations 
into their mean parts (structure of the star) and fluctuating 
parts (the non-radial oscillation). The detailed derivation is 
beyond the scope of this paper and the reader is referred 
elsewhere [6, 12, 131. The result of the separation is a 
fourth-order system of linear, ordinary differential equa- 
tions. If we write 

z = [<, p’, @‘, d@‘/drlT, (22) 

then (if r is the radial coordinate and R is the radius of the 
star), the coefficient matrix A(r), 0 < r < R of the equations 
is 

r ldp 2 _---- 1 +[(Z+l) 1(I+l)G o -- 
w dr r YP 

-T-t-- 
wrp w2r2 1 

(23) 

The quantities 5, p’, and @‘, which depend on radius r, are 
the radial displacement, the perturbed pressure, and the 
perturbed gravitational potential, respectively; p is the 
unperturbed pressure, p is the unperturbed density, G is 
the gravitational constant, y is the ratio of specific heats of 
the gas (for adiabatic oscillations y = 5 see [ 133). 

Part of the derivation of these equations involves an 
expansion in spherical harmonics which introduces the 
spherical harmonic indices I and m. For a spherically sym- 
metric star with uniform rotation and no magnetic field 
there is complete degeneracy in the spherical harmonic 
index m and so modes are characterized by the spherical 
harmonic index I representing latitude variation and an 
index n ( -cc < n < + cc ) for the ordered eigenfrequencies, 
~(1, n), to be determined and compared with observations 
of stars. 

There are two classes of solutions admitted by the above 
set of equations, those corresponding to pressure driving 
(p-modes, whose eigenfrequencies go to co) and those due 
to buoyancy (g-modes, whose eigenfrequencies condense on 
zero). These two solutions are characterized by quite 
different ranges of the eigenfrequency o. Further details on 
these classes of solution may be found in [ 12 or 133. 

4.2. Cowling Approximation 

In many stars, perturbations-in the gravitational poten- 
tial @’ are small and are neglected (even though the error 
introduced is not always negligible) when calculating the 
non-radial oscillation modes. This approximation, first 
suggested by Cowling [ 143 reduces the fourth-order system 
to a second-order one. Both of these cases are suitable for 
demonstrating the properties of the method we have 
developed. 

4.3. Unperturbed State-Polytrope 

The expressions for the unperturbed quantities men- 
tioned in the previous section may be reduced to a single 
second-order differential equation for the dimensionless 
density. Ify = (p(r)/p(O)) ‘Is and x = r/R is the dimensionless 
distance, then 

+ x2y” = 0. (24) 

The pressure is derived from the density using the so-called 
polytropic equation of state p = p(0) y(x)‘+ ‘Is (see [ 151). 
In this example, the polytropic index s is 1.5. 

A polynomial series solution was obtained for the above 
equation. In fact, two series were constructed around the 
points x = 0 and x = 1, with approximately 15 terms in each 
series [ 163. Both series are slowly converging. Conversion 
between the two series was performed at the point where 
both series give acceptable accuracy. 
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The use of a series solution for the above equation was 
motivated by the desire to minimize the error from this part 
of the calculation so that any errors present reflect those 
of the method. The usual form of the unperturbed state 
in stellar oscillation calculations is a table of discrete 
values. The errors in such tables are those inherent to the 
generating program and the method of interpolation. 

As stated above the unperturbed model is in dimen- 
sionless form and the results quoted below are also dimen- 
sionless. For the case of the sun the units for the eigen- 
frequency o are J-12” = 99.778 ~Hz, where MO 
is the mass of the sun and R, is its radius. 

4.4. Parameters (1, o) and the Boundary Conditions 

Two parameters appear in the equations for adiabatic 
nonradial oscillations of a star; the order of the spherical 
harmonic I and the eigenfrequency CO. For the purposes of 
this paper we will only concern ourselves with one class of 
solutions, the p-modes, since a value of s = 1.5 excludes 
g-modes from the solution, see [ 131. 

To investigate how the choice of 1 will affect our solution 
we can expand t and p’ in powers of a small stepsize 6x 
around the origin. To first order the regular solution 
behaves as 

5 cc 6x’-‘, (25) 

P’ 6X’W2 

-OCT. P 
(26) 

The above equations and the results of Section 3 show that 
near the origin the solution for the non-radial oscillation 
equations behave similiarly to the regular solutions of the 
modified Bessel equation. This implies that, as with the 
index v for the Bessel function, as 1 is increased the 
coalescence point will move toward the outside boundary. 
Thus for a given number of nodes, as 1 is increased the 
average wavelength of the solution will decrease. 

The parameter w is ultimately constrained by the choice 
of the unperturbed state and the surface boundary condi- 
tion (for a fuller discussion of the surface boundary condi- 
tion see [12]). The eigenfrequency o will be real, for 
example, if the perturbed pressure is zero at the surface. This 
means that for a fixed 1 there will be a family of discrete solu- 
tions with an increasing number of nodes (n), each with a 
discrete eigenfrequency CO. As with the Bessel equation 
example, and as can be seen from Eq. (26), the eigenvalue 
coalescence point (the singularity in the transformed equa- 
tions) will move closer to the origin as the number of nodes 
in the solution increases. 

4.5. Methods of Solution for Comparison 

The equations for non-radial oscillations of a star with 
center and surface boundary conditions constitute a 

standard boundary value problem, with a number of 
standard methods for their solution. Traditionally, two 
techniques have been used, relaxation methods to solve the 
coupled algebraic equations formed by differencing the 
equations [13], or a shooting method using a high order 
integration method such as fourth-order Runge-Kutta 
scheme [ 171. 

Both methods require the solution around the origin to 
be pre-computed via a Taylor series expansion. More 
importantly the discretization of the computational domain 
is dictated by the local wavelength of the solution. 

We will be comparing the method outlined in Section 2 
with a direct technique. The direct technique we use is an 
adaptive fourth-order Runge-Kutta method [IS]. Unfor- 
tunately the direct method was not accurate enough to solve 
the equations in their standard form. The reason is that 
the near singular behaviour at the outer boundary causes 
the amplitude of the solution 5 to grow, usually by many 
orders of magnitude, though it is finite at the boundary. The 
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FIG. 3. Quantities related to the calculation of normal modes of non- 
radial oscillations in a star as described in Section 4, using the method of 
this paper. The Cowling approximation was used (N= 2) with I= 2 and 68 
nodes in the solution. This figure represents the first R-region of the 
calculation where the eigenvalues are real: (a) the small parameter E, ; note 
its magnitude and where the minimum occurs; (b) the eigenvalue com- 
ponents (note the divergence near the origin and that the regular solution 
is chosen from the positive component); (c) components of the eigenvector 
matrix; (d) the components of R; and (e) the eigenfunctions B of the 
regular solution; the diagonal component (solid line) is initialized to unity 
at the point where q is a minimum and the off-diagonal element (dashed 
line) is small (it is initialized as discussed in Section 2). 
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adaptive algorithm was incapable of producing accurate 
results in this region. To resolve this, the variables U = tpr* 
and V= p’jp were adopted. At the outer boundary the 
amplitude of the variable U is bounded and therefore 
accurate solutions are obtainable with the adaptive algo- 
rithm. 

An important simplification obtained by using the trans- 
formed system of equations outlined in Section 2 is the 
ability to identify the regular solution without having to 
develop a series, or other, solution in the neighborhood of 
the origin. The solution for the transformed system is con- 
structed from a linear combination of amplitudes and the 
characteristic exponent based on the eigenvalues and near 
the origin, one solution will be unbounded. In this same 
region there will be two eigenvalues, one eigenvalue will be 
positive and one will be negative. The positive eigenvalue is 
associated with the regular growing solution and the 
negative eigenvalue is associated with the decaying irregular 
solution. By discarding the solution constructed with the 
negative eigenvalue we are sure to follow the regular 
solution. 
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FIG. 4. Quantities related to the calculation of normal modes of non- 
radial oscillations in a star as described in Section 4, using the method of 
this paper. This figure covers the second R-region, where the eigenvalues 
are complex conjugate pairs of the case described in Fig. 3. (a) the small 
parameters E, and s2 which are virtually identical, note the magnitude and 
where the minimum occurs; (b) the real components of the eigenvalues; 
(c) the imaginary components of the eigenvalues; (d) the real components 
of the eigenvector matrix; (e) the real components of the eigenvector 
matrix. 

Note that in Fig. 3a it appears that the parameter E, is 
unbounded near the origin. This would suggest that the 
method for defining the regular solution will produce errors 
for this problem (cf. Section 3.1). By expanding the coef- 
ficient matrix A in powers of Y and retaining the dominant 
terms we can calculate the eigenvalues, R and B near the 
origin. From this we find that E, remains bounded and is less 
than one near the origin, and therefore the positive eigen- 
value will produce the regular solution. 

In this particular example of our method the diverging 
behaviour of the equations near the outer boundary is in 
fact similar to a T-region in the interior. Note the imaginary 
components of the eigenvectors shown in Figs. 4d, e which 
tend to zero at the outer boundary. As with a coalescence 
point, the effect is to produce a near singular point in the 
transformed equations, see Fig. 5 for fi and the eigenfunc- 
tions b,. So, near x = 1 we transform to the U, V variables 
and solve the equations directly. By performing a boundary 
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FIG. 5. Quantities related to the calculation of normal modes of non- 
radial oscillations in a star as described in Section 4, using the method of 
this paper. This figure is a continuation from Fig. 4. (a) the real com- 
ponents of R (note the rapid variation near the outer boundary); (b) the 
imaginary components of n (note the rapid variation near the transition 
region to the left and the outer boundary to the right); (c)the real com- 
ponents of the eigenfunctions B (note the smooth variation compared to 
the rapid variation in (e)); (d) the imaginary components of the eigenfunc- 
tions B (note the small variations around the axis and divergence near the 
transition region); (e) 5, the first component of the original variables 
(radial displacement) reconstructed from the transformed variables (see 
Section 2) and scaled with unit maximum amplitude at x = 1. 
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layer analysis appropriate to the equations for the U, P’ 
variables near x = 1 we construct a method for specifying 
the width of the outer boundary layer by choosing how 
many nodes we require. To ensure accuracy we use a fixed 
grid fourth-order Runge-Kutta integration scheme. The 
preceding boundary layer analysis gives the approximate 
position of each node in the outer boundary layer and this 
information is used to integrate the equations using a fixed 
number of points per node. 

In this example we will compare the accuracy of the 
method outlined in Section 2 by comparing the eigen- 
frequency o with that obtained from the direct method. 
As a further comparison, we compare with some results 
for limited 1 and w by Mullan and Ulrich [19] (MU) that 
are accurate to six significant figures. 

4.6. Results for the Cowling Approximation 

As in the previous example there is only one coalescence 
point in the domain whose position is a function of I and o. 
Figure 3 shows the transformed variables in the R-region 
where all the eigenvalues are real. Near the origin, because 
of the singular nature of the coefficient matrix, the eigen- 
values and Q are diverging. The eigenfunctions B show that 
they were initialized at the minimum of the parameters E,, 
s = 1,2. Figures 4 and 5 show the transformed variables in 
the R-region, where the eigenvalues are complex conjugate 
pairs. Both figures show the full domain. The gap near the 
origin contains the first R-region and the T-region and the 
gap near the surface contains the outside boundary layer. 
From these figures it is easy to see that Q and the eigen- 

TABLE VI 

A Comparision of the Elapsed CPU Times (64-bit Word) for 
One Integration Sweep from the Center to the Edge to Calculate 
One Normal Mode Non-radial Oscillation of a Star, Using the 
Transformed Equations (
0  Tr -267.57 orma Tw i
0  Tr 30.24 0d units, are also listed for the two methods and from the results of MU [19]. 

These calculations were performed using the Cowling approximation 
(N = 2), with 1 to 2 nodes of the solution in the T-region, 75 grid points in 
the T-region, 75 grid points in the R-region, and approximately 75 points 
per node in the boundary layer. 

581/98!2-R 

functions B are very smooth and slowly varying over most 
of the R-region but they begin to diverge in the vicinity of 
the T-regions and at the outside boundary. This slow varia- 
tion is the key to the fast and accurate solution of the equa- 
tions in these regions. 

In finding the solution, both the direct method and the 
transformed method use the same calculation of the unper- 
turbed model and the same method and tolerance for con- 
vergence of the eigenfrequency. The eigenfrequency was 
considered converged if the absolute value of the correction 
was less than 5 x 10e6 relative to the eigenfrequency. MU 
used a different criterion for constructing their models and 
eigenfrequencies and consequently it is unlikely that a com- 
parison between them will produce agreement to the very 
high accuracy we are interested in. 

A comparison between the three methods is presented in 
Table VI. The eigenfrequency is listed for each method as 

TABLE VII 

A Comparision of the Elapsed CPU Timees (64-bit Word) for 
One Integration Sweep of Each Method as Described in Table VI 
as a Function of Increasing Wavenumber 1 and Nodes in the 
Solution 

Transformed Direct 

I Nodes N,, UT Time WD Time 

2 68 
2 124 
2 206 

3 66 
3 117 
3 151 
3 207 

5 66 
5 108 
5 150 
5 206 

50 51 
50 97 
50 152 
50 200 

100 155 
100 201 

200 125 
200 187 
200 237 

9 100.472 20.3 100.473 48.9 
16 180.900 22.6 180.899 84.4 
30 300.086 28.6 300.085 138 

10 99.7301 20.5 99.7290 49.1 
16 170.116 22.6 170.113 80.3 
25 220.381 26.6 200.378 103 
30 300.793 28.8 300.795 140 

10 101.090 20.4 101.089 49.7 
16 160.012 22.6 160.011 75.4 
20 220.345 24.5 220.342 102 
30 300.773 28.7 300.768 140 

10 101.096 20.8 
16 170.510 22.8 
21 251.317 24.7 
26 321.130 26.8 

21 281.494 25.2 
26 350.036 26.8 

15 275.092 21.0 
31 375.424 26.7 
31 45 1.090 29.4 

Note. These calculations were performed using the Cowling 
approximation (N = 2), with 75 grid points in the T-region, 75 grid points 
in the R-region, and approximately 75 points per node in the solution in 
the outer boundary layer (which is also listed). 
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well as the processing time (all times quoted are for a VAX 
station II running VAX/VMS with a Fortran 64-bit word) 
taken to calculate the solution from the converged eigenfre- 
quency. We can see that both the direct and the transformed 
methods produced accurate results but the time taken for 
the transformed method is substantially constant while the 
time for the direct solution increases with the number of 
nodes. The maximum number of nodes in the solution in 
this table reflect the results published by MU [ 191. 

Table VII extends the nodal and spherical harmonic 
index range of Table VI. As in Table VI, the eigenfrequency 
and the time taken are tabulated for our method and the 
direct method. Also tabulated is the number of nodes that 
need to be incorporated in the outer boundary layer used in 
the transformed method, to ensure accuracy. The number of 
nodes in the outer boundary layer is approximately 15 % of 
the total number of nodes in the solution and accounts for 
the increase in time that occurs with increased nodes. This 
feature is peculiar to this example and is not a feature of the 
general numerical method. 

The blanks in the table for large values of I reflect the lack 
of solutions from the direct method. To obtain solutions for 
large I the equations have to be transformed, removing the 
Y’~’ dependence from the solutions, with the initial condi- 
tions modified accordingly. For these tests this was not 
considered necessary. 

The preceding tables display the most accurate solution 
obtained from the transformation method. To obtain each 
entry in the table some of the parameters in the method were 
varied to test the sensitivity of the solution. Table VIII 
shows the sensitivity of the results to the input parameters. 

TABLE VIII 

A Comparison of the Sensitivity of the Computed Eigen- 
frequencies (in Non-dimensional Units) to the Number of Points 
per Region (Transition and Regular), Width of the T-region 
(Reflected by 5 + and 5 ~ ), and the Number of Nodes in the 
Boundary Layer NBI 

Points 5’ t- N, Na, Time 0 

15 0.5 2.0 0 21 24.1 281.477 
2.0 1 25.1 281.494 
4.0 1 25.2 281,494 
6.0 2 24.7 281.495 

15 4.0 6.0 1 21 24.8 281.494 
0.5 1 24.9 281.491 

75 4.0 2.0 1 16 22.9 281.603 
31 29.0 281.491 

1.50 4.0 2.0 1 21 49.2 281.493 

Note. N, is the resulting number of nodes in the solution in the 
T-region. The total number of nodes in the solution was 155 with I = 100. 

In this example each region was subdivided into an equal 
number of grid points, that is, the T-region and the R-region 
and the number of points per node in the outer boundary 
layer. 

This table demonstrates the insensitivity of the solution to 
the parameter 5- which specifies the transition width on 
the side with real eigenvalues and that one node in the 
transition on the side with imaginary eigenvalues ensures 
accurate solutions. All of the results in the tables have been 
run for 75 and 150 grid points in each region and no signifi- 
cant differences have been found. 

What is obvious is that the number of nodes in the outer 
boundary layer is important; with too few, errors begin to 
appear in the solution; with too many, the time to integrate 
through the domain increases. It should be remembered 
that the importance of the outer boundary layer is a reflec- 
tion of the problem being discussed, not the method. As 
stated above, standard techniques suffer because of the 
growing amplitude of the solution and the singular behavior 
of the coefficient matrix in this region. 

4.7. Full Fourth-Order System 

Thus far, the examples we have discussed have only been 
for second-order systems. Using a regularity condition at 
the origin and the boundary condition that the perturbed 
potential must match to the unperturbed vacuum solution 
in the exterior region, the fourth-order system may be 
solved. 

As in the case of the Cowling approximation our method 
uses the behaviour of the eigenvalues near the origin to find 
the regular solution. For this problem there will be two 
eigenvalues corresponding to two growing regular solutions 
and these will be followed to the outer boundary and 
linearly combined to satisfy the two boundary conditions. 

Table IX gives the results for a limited number of nodes 
and compares the times and eigenfrequencies against the 
direct method. The results of the two methods are in good 

TABLE IX 

A Comparison of the Elapsed CPU Times (64-bit Word) and 
Computed Eigenfrequencies for One Integration Sweep of Each 
Method as Described in Table VI 

Transformed Direct 

I Nodes OT Time WD Time 

2 20 31.3964 61.8 31.3953 36.0 
2 68 100.451 66.5 100.450 78.6 
2 109 160.780 76.6 160.780 112 
2 208 300.511 87.1 

No&. These calculations were performed using the unapproximated 
equations (N = 4), with 75 grid points in the T-region, 75 grid points in the 
R-region, and approximately 75 points per node in the boundary layer. 
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agreement. The time taken has increased relative to the 
Cowling approximation results; this is not surprising since 
in both cases two solutions have to be integrated to match 
the two boundary conditions at the outside edge. The direct 
method has approximately doubled in computational time 
and the transformed method has nearly tripled. Again this 
is not surprising as the transformed method is now solving 
for quantities in a 4 by 4 coefficient matrix where before it 
was a 2 by 2. 

4.8. Discussion 

In this example the equations for non-radial stellar 
oscillations are solved with ease for a large range of values 
for I and n. Difficulties encountered with the outside bound- 
ary layer are not a product of the method employed, but the 
problem. MU state that to achieve 6-figure accuracy in the 
eigenfrequency they require for their adaptive Runge-Kutta 
method -24% of the points in the outer loop of the 
function 4 and - 70 points per node in the remainder of the 
domain. This is for a solution with 37 nodes. Using the 
method of this paper we require, to achieve better than 
5-figure accuracy, -75 points in the R-region that covers 
85 % of the nodes and only - 75 points per node in the 
outer 15 % using the transformation to the U, V variables. 

It is clear from the results and from tests not presented 
here that considerable computational time is taken up with 
the calculation of eigenvectors, eigenvector derivatives, and 
a, and with most of the computational time involved with 
the integration of B, but this time is offset by the relatively 
few points that need to be used in the computational 
domain. More important is that the time taken is indepen- 
dent of the number of nodes in the solution, which is clearly 
illustrated by the examples presented here. 

5. SUMMARY 

In this paper a numerical method has been presented 
which allows the accurate and efficient solution of systems 
of linear ordinary differential equations when the solutions 
vary rapidly relative to the coefficients of the variables. For 
a typical solution which oscillates with many nodes and 
with rapidly varying wavelength and amplitude, this 
method has many advantages over the usual solution by 
direct techniques or approximation by analytic techniques. 
In addition to computational efficiency this technique 
presents the results in a compact way. In many circumstan- 
ces it precludes the need for series solutions near singular 
points. It also lends itself to efficient use of the results for 
computing integrals. Most importantly, this method has 
known sources of error which can be controlled without a 
substantial increase in computation times. 

In the numerical part of this paper we have attempted to 
demonstrate the general applicability of this method and 

used the examples as a guide for implementation. Our 
approach for these examples was to favor simplicity over 
sophistication so as to make clear the methodology. For this 
reason the timing and accuracy results presented here 
should not be viewed as the best achievable for this method. 
Many improvements are possible, at the price of intricate 
programming. Some of these are under investigation and 
will be presented in subsequent papers. 
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A. APPENDIX 

Al. Reduction in Orderfor an Nth-Order System 

We wish to derive an approximate solution valid in the 
neighborhood of a point where two eigenvalues coalesce. 
This can be used to estimate the halfwidth 6 of the boundary 
layer straddling a point of coalescence x, within which one 
must revert to the original equation for numerical integra- 
tion. The width can be expressed in invariant fashion in 
terms of the other eigenvalues and the trace and determi- 
nant of A. The calculation reduces the problem to con- 
sideration of the Airy equation, just as for a turning point 
analysis in the WKB theory for a linear second order 
ordinary differential equation. 

Consider the eigenvalue equation A(x) e,(x) = 
k,(x) eJx), where A = [Aii] is an N x N matrix, ei= [e,] 
an N-dimensional column vector, and x is a parameter. One 
can write alternatively in component form A,esi = kjeii, 
where the column index j is that of ej. Suppose that at x,. the 
eigenvalues are indexed so that k,(x,) = k2(x,) = k,, and 
that in the neighborhood of x, the eigenvalue k, is well 
separated from the other eigenvalues k\(x), k4(x), . . . . kN(x) 
which are distinct. Then in general there is but a single 
limiting eigenvector 

e*(x,) = lim ez(x, + E) = lim e,(x, + E) 
E’O &+O (Al) 

associated with k,, and the set of eigenvectors ej(x,), 
j = 2, 3, 4, . . . . N, are linearly independent. Choose nj = ej, 
j=2,3 7 ..‘, N, and pick slowly varying vectors ni and n2 so 
that the set nj, j= 1,2, 3, . . . . N, are linearly independent. 
Define V = [n,, n2, . . . . n,]=[nii], then detV#O, V1 
exists and 

V’AV = [V’An,, V’An,, k,di,, . . . . kNbiN]. W) 
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Assume that none of the set kX, k4, . . . . k, vanishes in the other b,(x, - 6) are of order E. Since nj(x, - 6) = e,(x, - 6) 
domain under consideration. Then, by suitable column for j= 3,4, . . . . N, we can choose the corresponding 
operations, we can put V’AV in echelon form [lo]. ii(xc- 6) = b,(x,-6) which are of order E, and these 
Namely, there exists a matrix U(x) 

C,,(x) C12(x) 0 
C,,(x) C22(x) 0 

U-‘AU= ’ ’ k3(x 0 0 0 

: : 

uch that should remain small in the thin boundary layer. The com- 
ponents [i(x, - 6) and c2(x, - 6) are linear combinations 

0 . 0 
0 . . . 0 
0 . 0 

: I 
of all the b,(x,. - 6) via the inverse of (A4), namely they 
are given by the one and two components of 
G=Ulzexp[-k,(x-x,)], evaluated at x=x,.-& They 

k‘,(x) ... 0 
are in general both of order unity and should remain so 

. . within the boundary layer. Moreover, within the boundary 

0 
. : layer we expect that min Ikj - k, 1 + max 1 Tii /. Then for 

..a k,+,(x) j = 3, 4, . . . . N, to lowest order in the small parameter E which 

(A3) underlies the quasi-WKB limit, neglecting the terms on the 
right-hand side of (A9) yields 

and the components C,(x) of the 2 x 2 matrix C are analytic 
in the neighborhood of the point x,. 

Let 5 be a column vector with N components c,(x). Write 
c-W r~lil + rj2i2 j = 3, 4, . . . . N, (A101 I- k,-k, ’ 

z = U& exp[k,(x - x,)] (A4) and the terms in the sums in (A7) and (A8) are second order 

and insert the expression in dz/dx= AZ. On distrib- 
in the small parameter prevailing in the boundary layer 

uting the derivative and multiplying on the left by 
compared with the derivative terms. Moreover, in the 

I.-’ exp[ -k,(x - x,)] there results 
boundary layer one can make a Taylor series expansion of 
the C, to obtain to lowest significant order equations for i, 

where 

646) 

In component form (A5) yields 
It is convenient to introduce the new dependent variables 

v1 =il exp Xdx(k,-C,,) (AI3) 
(A7) D x 1 

D 

x 
y12 = l2 w dx (kc - C22) 1 . (Al4) 

(A81 xc 

Then (Al 1) and (A12) imply 

41 
z = G2h exp 1 , (A151 

= 2 + ,$ r,,(,. 
r-3 

(A9) dv2 
cl;r=C,,rl,exp[j’dx(C,,-C22) . 1 (A16) 

-yr 

Suppose that in neighborhoods adjacent to but outside a 
boundary layer of thickness 26 centered on the point x, that At x, the eigenvalues of the 2 x 2 matrix [C,] must be both 

the small parameter E 4 1. Then at x, - 6 the theory of k,., since A and U ~ ’ AU have the same eigenvalues. Thus 

Section 2 applies. Suppose that z(x, - 6) corresponds to the 
solution with eigenvalue kl(x, - 6). Then, for one linearly C,,(x)-kc C,z(x) 

=o (A17) 
independent solution, b,(x, - 6) is of order unity and all the C,,(x) G,(x) -kc 
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and so 

k 

C*~(xc)-C22(xc) 

2 
2+ c (u ) c (x,) 

12 ’ c 21 c . (Al8) 

Clearly in order that k,. be a double root, 
Cir(x,) = C,,(x,) = k, and C,,(x,) C,,(x,) = 0. But the 
elements C,(x) are presumably slowly varying throughout 
the boundary layer; thus we can approximate C,,(x) and 
&i(x) by the linear term in the Taylor series in x. 
Moreover, 

= exp dC,,(x,.) dC22(xc) 

dx - dx 
(x-x,.)+ ..* 1 

= 1 +co[(x-X,)2]. (A19) 

In the boundary layer, if we assume that C,,(x,) vanishes 
but that C&x,.) does not, (A15) and (A16) reduce to 

(A20) 

(A21 1 

If n2 is eliminated there results 

d*v, 
-=(x-xx,) c,,(x,)dc(xc)g,. 
dx= c 

(A22) 

Define 

C,,(x) - Gz(x) 
> 

* 
g(x) = 2 + C,,(x) C21(x) 

= C,,(x) + C,*(x) 

( 

= 

2 > 

+ Cl2(X) C,,(x) - C,,(x) C,,(x) 

= i (Trace C)* - det C 

= a (Trace A(x) - f 
2 

k,(x) 
i=3 > 

det A(x) 
- n;“=, k,(4 

6423) 

(A24) 

which is the discriminant that must vanish at x = x, in order 
for a coalescence of an eigenvalue pair. Note that, since 
Crr(x,) = C,,(x,) and C2i(x,) = 0, it follows that 

& (xc) dG,(x,.) 
- = C12k) 7 

dxc 

and (A22) becomes 

(A25) 

(A261 

The general solution of (A26) is a linear combination of 
the Airy functions, namely Ai[(x - x,)(dg(x,)/dx,)1’3] 
and Bi[(x - x,)(dg(x,)/dx,)“3], where the dominant 
asymptotic behaviors are given for y 9 1 by 

Ai(y) - exp((-Wy3’*). 
nL’*y1/4 ’ 

WY) N 
exp(CW y3’*) 

n1’2Y’/4 ’ 
(~27) 

Ai(-y)- 
sin( (2/3) y312 + 7r/4). 

n1/*y1/4 7 

Bi(-y)- 
cos((2/3) y3’2 + n//4) 

n1~2y1f4 ’ 

It can be readily shown using these asymptotic forms 
and the limiting behavior of the WKB results, 
z,(x)-b,(x)expf:dx/k,(x), z,(x)-0, that the linear 
combination of Airy functions can be chosen so as to effect 
an asymptotic matching of the solutions. We will not carry 
this out here, since we are concerned only with defining the 
width 6 of the boundary layer for use in branching in the 
numerical solution. It is adequate to note that this 
corresponds roughly to the change in y required for the 
solution to become asymptotic, which is roughly y w 2.5. 
This implies that the halfwidth of the boundary layer is 

6 - 2.5 ddx,) ~ l/3 

dx, ’ (A281 
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